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The effects of fluid flow on secondary arm
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Although dendrites are the result of diffusion limited growth it has long been appreciated
that flow within the parent melt can have a dramatic effect on these structures. A free
boundary model of dendritic solidification is used to assess the effects on the secondary
arm coarsening processes of fluid flow within the parent melt. It is found that for solutally
controlled coarsening realistic interdendritic flow velocities of the order 10−3–10−2 m s−1

give rise to ripening rates which are comparable to diffusive transport. However, only flows
with a component aligned from the secondary tip towards the root enhance the ripening
rate. Oppositely aligned flows actually reduce the ripening rate. Thus, due to the four-fold
symmetry of dendrites in cubic metals, the actual effect on the secondary arm spacing
could be quite small. The results are shown to be in general agreement with recent
microgravity experiments on dendritic coarsening. C© 2003 Kluwer Academic Publishers

1. Introduction
One of the most fundamental and all pervasive mi-
crostructures produced during the solidification of
metals is the dendrite. Remnants of these dendritic mi-
crostructures often survive subsequent processing op-
erations, such as rolling and forging, and the length
scales established by the dendrite can influence not only
the final grain size but also micro- and hence macro-
segregation patterns. This can have a wide-ranging
influence on both the properties of finished metal-
lic products, affecting for instance mechanical proper-
ties, corrosion resistance and surface finish, and on the
formability of metallic feedstock, such as the ability to
resist hot tearing during rolling.

Where dendritic growth has been observed directly,
in transparent analogue casting systems such as suc-
cinonitrile [1] and xenon [2], the evidence is that the
morphology of dendrites grown at different undercool-
ings is probably self-similar when scaled against the
tip radius, R. Consequently, many of the more obvi-
ous length scales of the dendrite (trunk radius, primary
spacing etc.) are simple multiples of R. Two length
scales may thus be defined which characterize the den-
dritic solidification. One is the tip radius, R, the other
is the secondary arm spacing, λ2. While R is a function
of the growth conditions, it is well established that sec-
ondary dendrite arm spacing is determined primarily
by coarsening processes [3, 4].

Experimentally, the kinetics of the coarsening pro-
cess can be represented [5] via the relationship

λ2 = ctn
s (1)

where ts the local solidification time, that is the time
for which the solid and liquid co-existed, and c is a
constant. The exponent n has generally been found [6]

to be around 1/3. Theoretically, both radial melting of
the smaller arms [7] and lateral melting of the smaller
arms from their tips downwards [6] has been found
to give the correct form of the scaling law. However,
in situ, observations of the coarsening process in the
analogue casting system NH4Cl-H2O by Kahlweit [8]
found that smaller sidearms are always removed from
their tips downwards, indicating that lateral dissolution
is the dominant process.

Dendrites are diffusive structures, that is the forma-
tion of dendrites is indicative of diffusion limited trans-
port of heat and/or solute. However, it has been rec-
ognized for many years that fluid flow within a melt
can have profound effects on the morphology of den-
dritic growth. One of the first unambiguous demon-
strations of this was provided in a series of images by
Glicksman et al. [9] of dendritic growth in the trans-
parent succinonitrile-argon system. They found that
secondary arm development is asymmetric for growth
in the terrestrial laboratory and that as the principal
growth direction is rotated with respect to the g-vector,
the growth of side arms aligned (root to tip) with the
g-vector is favoured. They also found that orientation
with respect to the g-vector could effect the secondary
arm spacing, λ2. Convection induced flow was found
to be important at low undercoolings, with the effects
diminishing to zero as the undercooling was increased.

At low growth rates it is almost impossible to in-
hibit natural convection during solidification in the
terrestrial laboratory. Consequently, one of the most
fruitful approaches to studying convection-induced ef-
fects has been the utilisation of microgravity solidi-
fication. A number of early microgravity solidifica-
tion experiments [10–14] conducted during parabolic
aircraft flights and on sounding rockets indicated that
both primary, λ1, and secondary dendrite arm spacing
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increased in microgravity, when compared with sim-
ilar samples solidified at 1-g. Typically, microgravity
experiments have reported secondary arm spacings 20–
50% greater than that found at 1-g although one study
[15], on the Ni-based superalloy PWA-1480, found that
λ2 increased by a factor of 20. However, interpreta-
tion of these early results was somewhat muddled for
a number of reasons. Firstly, as described above, pri-
mary and secondary dendrite spacing are determined
by completely different processes. Consequently, it is
not clear why λ1 and λ2 should respond in the same way
to the suppression of convection. Secondly, coarsening
might be expected to be promoted by the enhanced heat
and mass transport engendered by convection, leading
to λ2 being larger in 1-g rather than in microgravity.

Many of these issues were resolved by the Isothermal
Dendrite Growth Experiment [16] (IDGE), in which
dendritic growth of high purity succinonitrile was stud-
ied under microgravity conditions in the cargo bay
of the Space Shuttle Columbia as part of the second
United States Microgravity Payload (USMP-2). Side-
branch spacings were measured and the measurements
were classified as belong to either the uniform regime,
the region close to the tip in which initial sidebranch
perturbations form but coarsening is negligible, or the
coarsening regime. The boundary between these two
regimes was placed at around 30–33R. An analysis of
the IDGE data by Corrigan et al. [1] showed that, when
scaled against the dendrite tip radius, no statistically
significant difference existed between λ2 as measured
in microgravity and a terrestrial data set acquired under
identical conditions apart from the gravity environment.
The apparent discrepancy between this result and other
measurements of secondary arm spacing in micrograv-
ity can be explained with reference to the findings of
Koss et al. [17] who found that the measured dendrite
tip radius was systematically higher in the microgravity
experiments than in comparable terrestrial experiments.
Moreover, the microgravity data set accord well with
theory for diffusion limited growth and it must be con-
cluded the difference between the data sets is result of
enhanced transport at the dendrite tip due to convec-
tion in the 1-g data set. Consequently, most previous
observations that secondary dendrite arm spacing in-
creases under microgravity conditions can be explained
by postulating the growth of self-similar dendrites at a
larger tip radius. Nonetheless, as secondary dendrite
arm spacing is governed by a (transport limited) ripen-
ing process, it is unlikely that buoyancy driven flow
has no effect other than to reduce the overall scale of
the dendritic structure via a reduction of the tip radius.
It may be the case that the effect on secondary arm
spacing has generally been masked by the much larger
effect on the tip radius. However, some flow related
effects were found in the data of Corrigan et al. [1].
When the dendrite envelope was parameterized via the
relationship

X

R
= α

(
Z

R

)β

(2)

where (X , Z ) are the co-ordinates of the sidebranch
tips in a frame of reference with its origin at the tip of

the primary dendrite (primary growth along x), it was
found that statistically significant differences existed
between the microgravity and 1-g data sets for both α

and β, although it is not clear that this is specifically
related to coarsening. A detailed analysis of envelope
shapes and their relationship to dendrite growth models
is given by Li and Beckermann [18].

The IDGE results have also some yielded a number
of results that suggest dendritic coarsening may not yet
be fully understood, even in the purely diffusive micro-
gravity environment. In particular, Li and Beckermann
[19] find that in the coarsening regime the secondary
arm spacing, λ2, does not appear to follow the usual
t1/3
s relationship, although the radius of curvature at the

secondary arm root is well described by current ripen-
ing theories. They suggest that this discrepancy could
be due to the fact that for free dendritic growth there is a
competition between capillary driven ripening and net
solidification due to the presence of the undercooled
melt.

The complexity of the solidification process is such
that, until recently, models of solidification in a non-
stationary fluid have generally decoupling the flow from
the evolution of the interface [20]. However, recently a
number of authors have presented 2-dimensional phase-
field models including the effects of flow [21–24]. In
general these have concentrated on the effect of flow
on the tip shape, growth velocity [23] and the forma-
tion of initial side-branch perturbations [21, 24]. How-
ever, in a study on the effects of a shear flow on the
primary dendrite morphology Tönhardt and Amberg
[21] note that where the flow is aligned from tip to
root with secondary dendrite arms ripening appears to
be increased, although they do not quantify the effect.
Beckermann et al. [25] and Diepers et al. [26] have pre-
sented a model for the Ostwald ripening of a popula-
tion of infinitely long cylinders in a flow-field, in which
they find that flow changes the time dependence of the
coarsening rate. Diepers et al. calculated the coarsen-
ing rate on two different bases, the time evolution of
the mean radius of curvature and the time evolution of
the specific surface area. The coarsening rate for pure
diffusive transport was found to be t1/3

s , irrespective of
the calculation basis used. In the presence of flow the
coarsening rate was found to be t1/2

s if calculated on an
area basis and to fall between t1/3

s and t1/2
s if calculated

on a curvature basis. However, as experimentally den-
drites are always observed to coarsen by lateral, rather
than radial, dissolution the implications of this result
for dendritic coarsening are not clear.

In this paper we use a free boundary model of den-
dritic solidification to assess the effects of flow on
the dynamics of secondary arm coarsening. Flow both
parallel to and perpendicular to the axis of the sec-
ondary arm is considered. The results of the simula-
tions are discussed with reference IDGE microgravity
experiment.

2. Computational procedure
We consider here thermal ripening although the case of
solutal ripening of a pure material grown from solution
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is directly analogous. Heat and mass transfer within the
dendritic array is governed by the diffusion equation

∂T

∂t
= D∇2T (3)

where T is temperature and t is time. D is a composite
thermal diffusivity given by

D = pDs + (1 − p)Dl (4)

where Ds is the thermal diffusivity in the solid, Dl is
the thermal diffusivity in the liquid and p is an order
parameter which takes values 0 ≤ p ≤ 1, where p = 1
denotes the material being fully solid and p = 0 fully
liquid. Balance of fluxes at the solid-liquid interface is
given by

Hρv = κsGs − κlG l (5)

where ρ is the density, taken here as being the same in
the solid and liquid states, H is the latent heat of fusion,
κs and κl are the thermal conductivities in the solid and
liquid respectively, v is the local velocity of the interface
along the outward pointing normal n̂, and Gs and G l
are the thermal gradients at the interface along n̂ in the
solid and the liquid.

Solutions to the diffusion problem are sought on a
regular, 2-dimensional M × N grid using a alternating
direct implicit (ADI) finite difference scheme [27] to
yield the temperature at the advanced time step.

The interface temperature is fixed by its geometry.
For a solid growing with an anisotropic, four-fold sym-
metric interfacial energy γ , the local interface liquidus
temperature, Ti, is given by

Ti = Tm − (K1 + K2)γoTm

Hρ
{1 − a cos(4φ)} (6)

where γo is the nominal interfacial energy between the
solid and liquid phases, a the surface energy anisotropy,
φ the angle between n̂ and the principal crystallographic
axes and Tm is the equilibrium liquids temperature. K1
and K2 are the two principal components of the surface
curvature. If y is the locus of the solidification front
then K1 is given by

K1 = y′′

{1 + (y′)2}3/2
(7)

However, for a 2-dimensional model the K2 component
of curvature would normally be absent, although this
can have a significant impact on ripening kinetics. For
a figure of revolution K2 is given (in cylindrical co-
ordinates) by

K2 = y′

r (1 − (r ′)2)1/2
(8)

where r is the radial distance from the rotation axis to
the corresponding point on the locus y. Here we have
employed a pseudo 3-dimensional model. During the
ripening process the dendrites maintain a good degree
of symmetry about the axis passing through the tip and
consequently we treat each needle as if it were a figure
of revolution about a local rotational axis located at xc,

Figure 1 Schematic diagram of the model array of secondary dendrite
arms used in the simulations.

as shown in Fig. 1. The component of curvature K2 is
then evaluated as

K2 = y′

(x − xc)(1 − (x ′)2)1/2
(9)

The solution to the diffusion equation remains however
2-dimensional.

In order to simulate solidification and melting the
model independently tracks the order parameter pm,n
at each grid point. If at any node (m,n) 0 < pm,n < 1,
the volume cell which has that node as its centroid will
contain some part of the freezing front and the temper-
ature at that node is fixed at the local liquidus temper-
ature. At the end of each time step pm,n is updated at
each node for which 0 < pm,n < 1 by considering the
heat flux into or out of the volume element during the
time step.

However, unlike the phase field approach pioneered
by Kobayashi [28], in which the solidification front is
assumed diffuse, here we assume the solidification front
is sharp and must have a definite position. Consequently
we interpret a value of 0 < pm,n < 1 as meaning the vol-
ume cell which has the node (m,n) as its centroid con-
tains some part of the front such that the area fraction
of solid contained within the cell is just equal to pm,n.
In this case the differentials of the locus of the freezing
front, y, are given by

y′ = p′
m,n = (pm+1,n − pm−1,n)δz

2δx
(10)

and

y′′ = p′′
m,n = (pm+1,n − 2pm,n + pm−1,n)δz

(δx)2
(11)

Full details of the computational procedure are given
by Mullis [29].

Analyzing flow effects in a 2-dimensional model and
then attempting to use that model to explain inher-
ently 3-dimensional phenomena presents serious prob-
lems as the nature of the 2- and 3-dimensional flow
fields may be very different. In particular, for the geo-
metry shown in Fig. 1, in the 2-dimensional model flow
in the x-direction would be completely blocked in the
interdendritic region by the dendrites while in the actual
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3-dimensional physical system flow around the den-
drite would occur. To attempt to build into the model
an approximate flow field which overcomes this prob-
lem, without moving to a full 3-dimensional treatment
which is currently computational infeasible, we have
adopted the following procedure. The domain is sub-
ject to what we term a uniformly directed flow field,
which is a flow field generated on the basis of a number
of empirical rules.

The first stage in generating the uniformly directed
flow field is to use a commercial computational fluid
dynamics package to simulate the flow around a repre-
sentative 3-dimensional body. In this case we used the
program CFX 4.11 to generate the flow-field around a
paraboloid of revolution in 3-dimension at Reynolds
numbers that are appropriate to interdendritic flow and
in the same orientation as the flow to be simulated in
the 2-dimensional free boundary model. The magni-
tude of the flow velocity is then parameterized in terms
of the parameters X/R and Z/R where X and Z are
co-ordinates in a frame of reference with its origin at
the dendrite tip. This parameterization is then used in
the 2-dimensional free boundary model to generate the
flow-field V f. Fluid enters the domain with an initial
velocity (U f x î , U f zk̂) and maintains this velocity far
from the solid. However in proximity to the dendrites
the magnitude of V f is reduced according to the param-
eterization derived from the 3-D flow model, although
we do not attempt to parameterize the direction of the
flow. This results in a flow within the 2-D model which
has a number of desirable features namely;

• the flow velocity is unaltered far from the solid,
• the flow velocity varies smoothly towards zero as

a solid interface is approached, simulating the no-
slip condition, and is zero in the solid,

• a non-zero flow occurs in the interdendritic region
as the 2-D dendrites do not completely block the
flow.

The computational domain within the free boundary
is extended sufficiently far beyond the initial dendrite
tips in the z-direction that the flow-field on the upper z
boundary may be considered to be unperturbed by the
presence of the solid. The flow velocity on the upper z
boundary is then just equal to the inlet velocity. In most
simulations the total z extent was taken as 2.5 times the
initial dendrite amplitude (note that only the part of the
domain showing solid is shown in Fig. 1).

Within the model the effects with a uniformly di-
rected flow field are incorporated by rewriting the trans-
port equation (Equation 3) as

∂T

∂t
= D∇2T − V f ·

(
∂

∂x
î + ∂

∂z
ĵ

)
T (12)

where V f is the local fluid velocity.
As a consequence of our free boundary solution to the

diffusion equation being 2-dimensional it is likely that
the calculated ripening rates will be slower than those

1CFX is a product of AEA Technology Ltd., Harwell, UK.

pertaining in 3-dimensions. However, as all our trans-
port processes are calculated in 2-dimensions we should
still be in a position to comment upon the relative rates
of flow and diffusional transport and we will return to
this issue when discussing the results of the simulations.

In order to study the dendritic ripening problem, in-
cluding the effects of flow, we use a model dendritic
array as illustrated in Fig. 1, consisting of a region of
the primary trunk containing seven secondary arms of
identical curvature R2. Each of the arms has length l. By
tracking the position of the secondary tips as a function
of time, the average ripening rate for the array, dl/dt ,
can be estimated. The results are presented initially in
a non-dimensional form so that the conclusions can be
generalized to either thermal or solutal growth. For the
same reason we consider ripening in both the symmet-
ric (Ds = Dl) and asymmetric (Ds = 0) models, where
Ds = Dl are the diffusivities in the solid and liquid phase
respectively.

3. Results
As discussed above, studies of ripening in transparent
analogue systems [8] have demonstrated that dendrites
always re-melt axially, from their tips downwards, as
opposed to radially. This implies that the dominant dif-
fusion path is from the dendrite tip to its root, as opposed
to neighbouring dendrites of higher curvature. Conse-
quently, secondary arms are eliminated from an array
due to the variation in l of individual dendrites, not a
variation in their radius of curvature, R2. Kirkwood [6]
has demonstrated that the rate of arm dissolution, dl/dt ,
can be related to the mean secondary arm spacing, λ̄2,
in a straightforward manner. In this study we have used
dl/dt to measure the rate of dendritic ripening. This
approach is valid as we are primarily concerned with
the relative magnitudes of flow and diffusion effects.

For axial ripening via diffusional transport only, the
ripening rate, dl/dt , is given by [30]

dl

dt
= −�Dl

(
A1 + A2

Ds

Dl

)
1

R2
2

(13)

where R2 is the radius of curvature at the tip of the
secondary arm and A1 and A2 are geometrical factors
relating to the diffusion paths through the liquid and
solid respectively. � is a group of material parameters
which is given by

�t = γoTmcp

H 2ρ
(14)

for pure thermal coarsening or

�s = γoTm

m HρCl(1 − k)
(15)

for pure solutal coarsening. Here cp is the specific heat
capacity, m the slope of the liquidus, k the partition
coefficient and Cl the solute concentration in the liq-
uid. By considering the form of the modified transport
Equation 12 and by dimensional analysis we may write

dl

dt
= −�Dl

R2
2

{
A1 + A2

Ds

Dl
+ A3 Pt f z

}
(16)
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Figure 2 Ripening rate, dl/dt , as a function of the z-component of the
flow velocity, Vfz for both the symmetric (Ds = Dl) and asymmetric
(Ds = 0) ripening model.

where A3 is a geometrical constant and Pt f z is the
Peclet number for the flow

Pt f z = U f z R2

Dl
. (17)

Fig. 2 shows the ripening rate, dl/dt as a function of the
Peclet number for the z-component of the flow velocity,
V f z . For both the symmetric (Ds = D1) and asymmet-
ric (Ds = 0) cases the curves show a linear increase in
ripening rate with increasing Peclet number for posi-
tive flows (flow directed from the dendrite tip towards
the root). Moreover, straight lines fitted through these
portions of the data set are approximately parallel. For
negative flows the linear trend continues provided the
Peclet number is small. At large negative Peclet num-
bers the ripening rate attains a steady rate independent
of the value of Pt f z . The value of this steady rate is
zero for the asymmetric case but non-zero in the sym-
metric case. That is, if fluid flow is in the same sense as
diffusive transport the ripening rate will be enhanced
whereas if the flow opposes the diffusive transport
ripening will be inhibited. In the asymmetric case, at
sufficiently high negative flow velocities, this diffusive
transport can be completely inhibited and hence ripen-
ing cases. Conversely, in the symmetric case, ripening
cannot be completely inhibited by the flow due to dif-
fusion through the solid.

In the simulations presented all the dendrite arms
within the array have the same initial value of R2. In
the figure presented this was R2 ≈ 1 µm, although a sen-
sitivity analysis has been conducted on R2 to confirm
the validity of Equation 16. Once the simulation be-
gins R2 may vary freely. However, because all the den-
drites have the same initial curvature and the dominant
dissolution mechanism is axial there is little competi-
tive ripening and the value R2 actually varies by only
12.5% during the course of the simulation. The initial
secondary arm spacing in the simulations was taken as
λ2 = 7.5 R2, although due to the predominantly axial
mass transfer direction the results are not particularly
sensitive to the value of λ2 assumed.

It is clear that Equation 16 provides a reasonable
description of Fig. 2 provided we impose the additional

constraint that

dl

dt
= −�Dl

R2
2

{
A1 + A2

Ds

Dl
+ A3 Pt f z

}

for A1 ≥ −A3 Pt f z (18)

dl

dt
= −�

A2 Ds

R2
2

otherwise. (19)

That is, large negative flows cannot lead to negative
ripening rates (i.e. growth) and for the symmetric model
cannot cancel the effects of diffusion through the solid.
The general validity of Equations 18 and 19 has be
confirmed by a number of sensitivity studies.

Although our current model contains too few den-
drites to be able to determine the coarsening exponent
n in Equation 1 the form of the equations are consistent
with n = 1/3 for pure diffusive ripening and n = 1/2
for pure advective ripening and these exponents can be
obtained by a straightforward analytical analysis. This
conclusion is insensitive to whether the axial coarsen-
ing model of Kirkwood [6] or the radial coarsening
model [7] is used.

Kirkwood [6] has given A1 ≡ 4, although a very sim-
ple geometrical model was assumed. Here we will en-
deavour to estimate the constants A1 − A3 from the
results presented. From Fig. 2 the ripening rate at
Pt f z = 0 yields the coefficients A1 from the curve
for the asymmetric simulation and A1 + A2 from
the curve for the symmetric simulation. These values
are A1 = 0.46 and A1 + A2 = 1.39 giving A2 = 0.93.
The value of A2 can be confirmed independently by
taking the base level of the symmetric ripening rate
for Pt f z � 0, which yields A2 = 0.88. An independent
evaluation of A1 + A2, obtained by varying Dl gave
A1 + A2 = 1.37 indicating that the values obtained for
A1 and A2 are self-consistent. The value of A3 can
be estimated from the slope of the linear portion of
curves in Fig. 2 (V f z > 0). These values are A3 = 1.44
for the asymmetric simulation and A3 = 1.74 for the
symmetric simulation. Best estimates for these geo-
metrical constants accordingly are A1 = 0.47 ± 0.03,
A2 = 0.91 ± 0.03 and A3 = 1.59 ± 0.15. We would
stress that these values are typical of 2-dimensional
transport and will almost certainly be higher if a
3-dimensional transport model were considered.

These geometrical factors should scale in the same
way as the dimensionless rate constants Kdiff and Kconv
discussed by Diepers et al. [26] for diffusional and con-
vective coarsening respectively. It is interesting to note
that in their calculation of 2-D Ostwald ripening the
ratio Kconv/Kdiff was 3.97 ± 0.33 (based on 6 simu-
lations with solid fractions between 5.9% and 29.2%)
which is not very different from our ratio A3/A1 = 3.38,
despite the different geometries studied (Diepers et al.
[26] used a solute based model so that diffusion was
dominated by transport through the fluid phase in their
model, consequently for comparison we have taken
the geometrical factor for diffusion through the fluid
phase, A1, as being equivalent to their Kdiff). This gen-
eral agreement between our model and other models of
coarsening with flow gives us reasonable confidence in
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Figure 3 Ripening rate, dl/dt , as a function of the x-component of the
flow velocity, Vfx. Error bars denote the difference between simulations
with oppositely aligned flows.

our model, in particular with regard to the approximate
nature of the flow-field used.

So far we have only considered the effects of flow di-
rected along the axis of a secondary arm. According to
the simple model proposed above a flow direct orthog-
onal to the axis of the secondary arm should have no
effect. This hypothesis is investigated in Fig. 3, from
which it is apparent that there is a small effect. For
transverse flows (directed orthogonal to the axis of the
secondary arm) any effect should be independent of the
direction of the flow. Consequently we have plotted the
ripening rate, dl/dt , against |Pt f x |. For each data point
the ripening rate has been calculated for both the posi-
tively and negatively directed flow and the mean value
taken. The effect of transverse flow can be seen to be
linear, suggesting that it has the same form as for flow
directed along the axis. Consequently we may propose
a modified form to Equation 18, namely

dl

dt
= −�Dl

R2
2

{
A1 + A2

Ds

Dl
+ A3 · Ptf

}
(20)

where Ptf is the (modified) vector Peclet number

Ptf = R2

Dl

(|U f x |
U f z

)
(21)

and A3 is the vector

A3 =
(

A3x

A3z

)
=

(
0.05

1.59

)
(22)

4. Discussion
So far we have considered how flow in the parent fluid
may effect the dendrite arm coarsening process in a
non-dimensional fashion. In this section we consider
the magnitude of the flows that might actually arise in
a dendritic semi-solid and consequently the nature of
the flow related effects that might actually be observed.
Hellawell [31] estimates that in metallurgical process-
ing where the melt is subject to vigorous shearing, such
as rheocasting, interdendritic flow velocities are likely

to be of the order 0.01 m s−1. Interdendritic flow veloc-
ities due to natural convection might be expected to be
lower than this, possibly by up to an order of magnitude.
From Fig. 2 we can estimate that values of Pt f z around
0.5 will give rise to an effect comparable in magnitude
to pure diffusional ripening. Taking order of magnitude
estimates of R2 ≈ 1 µm, Dl ≈ 10−9 m2 s−1 for solutal
diffusion or Dl ≈ 10−6 m2 s−1 for thermal diffusion a
Peclet number of 0.5 translates to a flow velocity, V f z ,
of 10−3 m s−1 in a solutally controlled system or 1 m s−1

in a thermally controlled system. This would indicate
that in solutally controlled systems (i.e., alloys under
most solidification conditions) interdendritic flow by
natural convection plays a significant role in the ripen-
ing of individual secondary arms. Conversely, it would
also appear to rule out interdendritic flow having any
significant effect on secondary arm coarsening in ther-
mally controlled systems.

However, even though flow may have a significant ef-
fect on the ripening rate of individual secondary arms,
this may not translate into a significant effect on the
average secondary arm spacing, λ̄2. For macroscopic
flows we would expect that in most cases the flow is
randomly oriented with respect to the growth axis of
the secondary arm. If the effect of flow on dl/dt were
completely symmetric we would thus expect that, on
average, macroscopic convection would have no effect
on secondary arm spacing. Some arms would coarsen
more quickly due to the flow but this would be exactly
balanced by those coarsening less quickly. In fact, the
effect is not exactly symmetric for two reasons. Firstly,
if we consider the component of the flow aligned along
the axis of the secondary arm (the z-direction in our nu-
merical models), there is an upper limit to the extent to
which dl/dt can be inhibited (the plateau in Fig. 2) but
no corresponding limit to the extent to which it can be
enhanced. High flow velocities will thus tend to shift the
mean coarsening rate towards higher values. Secondly,
transverse flows always lead to dl/dt being enhanced.
However, the first of these mechanisms will only be
operative for relatively high flow velocities while the
second is a relatively minor contribution to the overall
ripening rate. Randomly direct flows should thus lead to
a small increase in λ̄2. Moreover, even where the flow
direction can be controlled with respect to the direc-
tion of the primary dendrites, the four-fold symmetry
of the secondary arms in cubic crystals should lead to
an increased ripening rate. For a forced flow aligned
along the primary trunk all the secondary arms will ex-
perience a transverse flow which will enhance ripening.
Conversely, for a forced flow aligned transverse to the
primary trunks, some of the secondary arms will have a
component of the flow aligned along their growth axes
and some component of the flow aligned transverse to
their growth axes. Thus it is likely that under most flow
condition the effect of flow on the mean secondary arm
spacing, when scaled against the tip radius, will be to
give rise to a small increase in λ̄2. This will be true even
if there is a significant effect on the ripening rates of
individual dendrites.

From the above arguments we would expect that the
ripening rates under 1-g conditions should be slightly

2522



higher than those under microgravity conditions. This
conclusion is consistent with the data of Corrigan et al.
[1]. From their results the ratio λc

2/λ
u
2 can be calculated

as 1.23 for the 1-g data set and 1.10 for the microgravity
data set, where λc

2 is the secondary arm spacing in the
coarsening regime and λu

2 is the secondary arm spacing
in the uniform regime. That is, if we normalise against
the secondary arm spacing in the uniform regime, where
coarsening is negligible, dendrite grown under terres-
trial conditions do show a slightly enhanced coarsening
relative to those grown in microgravity.
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